(−)-α-Bisabolol Production in Engineered Escherichia coli Expressing a Novel (−)-α-Bisabolol Synthase from the Globe Artichoke Cynara cardunculus var. Scolymus

American Chemical Society

(−)-α-bisabolol
(−)-α-bisabolol synthase
Escherichia coli
fermentation
mevalonate pathway
artichoke
Author

Hyun Seung Lim, et. al.

Published

July 18, 2021

d-

(−)-α-Bisabolol is a functional ingredient in various health and cosmetic products and has antibacterial, anti-inflammatory, and wound healing properties. (−)-α-Bisabolol is chemically synthesized and produced by steam distillation of essential oils extracted from Brazilian Candeia (Eremanthus erythropappus). To sustainably produce pure (−)-α-bisabolol, we previously engineered Escherichia coli to produce 9.1 g/L (−)-α-bisabolol via heterologous mevalonate pathways and (−)-α-bisabolol synthase (BOS) from German chamomile, Matricaria recutita (MrBOS). BOS has only been reported in MrBOS and Brazilian Candeia (EeBOS). The limited availability of BOS has made it difficult to achieve high titer and yield and large-scale (−)-α-bisabolol production. We identified a novel BOS in globe artichoke (CcBOS) and examined its functionality in vitro and in vivo. CcBOS showed higher catalytic efficiency and (−)-α-bisabolol production rates than those from MrBOS or EeBOS. In fed-batch fermentation, CcBOS generated the highest reported (−)-α-bisabolol titer to date (23.4 g/L). These results may facilitate economically viable industrial (−)-α-bisabolol production.

DOI:10.1093/nar/gkac206. IF.(y). Citation . ISSN no.-.

Original article